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ABSTRACT

With the development of the Computer Vision discipline within Deep Learning, Pose Estimation tasks
have seen increasing interest and growth in the past decade. Pose Estimation refers to the problem
of localizing specific body parts in images and videos and encoding the spatial information into a
caption relating human skeletal joints with pixel coordinates. While Pose Estimation models have
largely been Convolutional Neural Network (CNN)-based, the advent of Vision Transformers (ViT)
has opened new areas of research. In this study, we fine-tune a transformer-based model, BLIP, to
generate accurate positional captions and explore attention mechanisms under this task. Starting
with a low-complexity version of our problem, we scaled up to our task of fine-tuning BLIP for Pose
Estimation. After fine-tuning BLIP on varying hyperparameters, we found that the model consistently
performed well during tuning. Within a restricted threshold of 1 pixel, it retained an 81% validation
accuracy and an average error of about 4 pixels.

1 Introduction

Pose Estimation tasks endeavor to estimate the spatial configuration of body parts, providing machines with a technique
with which to detect figures and movements in visual media. The spatial and geometric information Pose Estimation
provides has a wide range of applications and sub-tasks, resulting in Pose Estimation models taking on many forms.

1.1 Related Work

Pose Estimation for the human body is naturally called Human Pose Estimation (HPE), and the development of HPE
models has long had a symbiotic relationship with action recognition and motion analysis problems. Most action
recognition and motion analysis tasks need accurate estimates of human skeletal joints to benchmark each action.
Simultaneously, action recognition and motion analysis prompt new niches to explore for Pose Estimation models; odd
movements and body configurations challenge Pose Estimation models to generate accurate positional labels for the
human skeletal joints in the image/video input [13].
Additional fields of applications of HPE models are robotics, augmented and virtual reality, and accessibility technology.
HPE models can focus on specific body parts as well; hand sign language recognition centers HPE models on human
hand movements and poses [12]. Applications of Pose Estimation models extend beyond HPE as well, with Animal
Pose Estimation models becoming helpful in understanding animal behavior and migration patterns of endangered
species [5].
In this paper, we focus on Human Pose Estimation, specifically 2-dimensional HPE models for single-person estimation.
Two-dimensional (2D) Human Pose Estimation models take in a preprocessed image of a person as input and then
output a list of up to sixteen key points. Each key point is associated with a human body part or joint. Like several
computer vision tasks, 2D HPE models have seen significant development from the introduction of Deep Learning
methods. In 2014, Google’s DeepPose [15] was released, which utilized a cascade of Convolutional Neural Networks
to perform pose regression [16]. Models like Hourglass built on DeepPose’s cascading structure and reached higher
accuracy rates [10], others pair the CNNs with a heat map method to increase accuracy [14] or integrate Graph Neural
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Network (GNN) based methods [9]. Most state-of-the-art models for HPE continue to follow these strategies and are
largely CNN-based. OpenPose, a common benchmark, utilizes these methods for real-time estimation [2].
Since the adaptation of Transformers for the computer vision context, Vision Transformers (ViT) have been applied
to tasks that only CNNs’ had once interacted with. Pose Estimation has become one of these tasks, and in the past
three years, a variety of ViT architectures have been constructed. ViTPose employs a plain transformer model with a
lightweight decoder for feature extraction and the pose estimation task [17]. ViT’s expanded receptive field relative to a
CNN allows ViT-based models to better understand spatial constraints between human joints. Several other models also
apply ViTs to the Pose Estimation domain, but they continue to incorporate CNNs’ in the model structure for additional
feature extraction [8, 16, 18, 20].
With the development of transformer-based models, multi-modal Vision and Language models have demonstrated
great performance on a variety of tasks, including HPE and action recognition tasks [6]. Since HPE is naturally an
image-to-text problem, studying if Vision-Language pre-trained methods (VLP) for image-to-text can be applied to the
Pose Estimation domain has been a very recent line of research. Currently, the zero-shot pre-trained model CLIP [11],
is the primary model being adapted for Pose Estimation and adjacent tasks. Methodologies like LAMP (Language
Assisted Multi-person Pose estimation) [4] explore its robustness in understanding human poses even under occlusion
and multi-person settings.

1.2 Study Objectives

Following current research on employing multi-modal VLP methods for Pose Estimation, this paper explores whether
a fine-tuned BLIP, a pre-trained transformer-based model, can generate positional captions for human anatomical
key points. BLIP has a unique multi-modal structure composed of different modules and losses [7], and studying it
in the Pose Estimation context allows us to analyze the model’s internal dynamics and attention mechanisms under
HPE’s spatial constraints. BLIP has also demonstrated higher accuracy than CLIP in general image caption-generating
tasks [7], a key reason why we are interested in using BLIP to generate positional captions.
Due to a lack of literature on employing BLIP for Pose Estimation, we approach our main Pose Estimation task first
with simplified versions of it to verify that BLIP can learn poses and human anatomical key points. After checking that
the model can learn these key points, we train the model to identify and caption a single-body joint using the entire
input dataset.
Once we confirm that BLIP can learn and be trained for Pose Estimation, we train and fine-tune BLIP to generate
a caption with all the positional information about the sixteen key points. The fine-tuning is done with three sets of
parameters: learning rate, batch size, and optimizer type. Based on the optimal parameters found after twenty-five
epochs, the final model was trained and validated with two evaluation metrics. Through our experiments, we see that
BLIP can perform Pose Estimation and generate positional captions. The model displays relatively low training loss
and high validation accuracy, considering the nature of the model and the limited compute.

2 Methodology

As HPE is primarily an image-to-text task, in this paper, the model’s input is an image of a person, and the output is
a caption that provides spatial information about the human anatomical key points that appear on the image. Hence,
for each image in the data, the model is trained on a comprehensive dataset to generate a caption with the (x, y) pixel
coordinates for each of the key points that are visible in the image.

2.1 Data

The dataset that we utilize to work with BLIP in the context of Pose Estimation is the MPII Human Pose dataset.
Aggregated in 2014 from public YouTube videos, the dataset serves as one of the state-of-the-art benchmarks to
evaluate HPE and action recognition models. Containing around twenty-five thousand images with over forty thousand
people with annotated anatomical key points, it pairs (x, y) pixel coordinates of each anatomical key point that appears
in the image with its respective MPII Joint Indices. The key points and corresponding index are listed in Table 1. These
labels serve to ground truth the fine-tuning that is done [1].
Additionally, the test set includes more detailed labels with notes regarding occlusions and 3D information like torso
and head angles/orientations [1].
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Figure 1: Example of an image from the MPII Human Pose dataset. The image on the left is unlabeled, and the
image on the right is the same image labeled. Each visible key point is labeled with a dot and a shorthand string
representation of the anatomical key point.

As the MPII Human Pose dataset stores the image identification (ID) names and annotations in a MATLAB file, to
access the dataset and create a working pipeline for this experiment, we begin by processing this file. After downloading
the file, the MATLAB fields and object structures are converted to a Python key/value structure using the SciPy Python
library.
In order to refine the dataset to the scope of our question and mitigate dataset-related issues down the line, we only
retain images (and their corresponding labels) that contain a single person with all sixteen key points visible. Once the
appropriate subset of the MPII dataset is compiled, we split it into a training and validation set. Each subset accounts for
80% and 20%, respectively. The number of images in the training and validation sets are listed in the following table 1.

Total Number of Images Training Size Validation Size

1475 1170 293
Table 1: Number of images in the training and validation sets based on the 80/20 training and validation split.

2.1.1 Data Preprocessing

One key data preprocessing step for smooth BLIP training involves resizing the images from the MPII dataset. After
loading the images and annotations from the MPII that only contained one person, the images were resized to 384
pixels × 384 pixels, and the ground-truth positional labels were also treated to account for any offsets. Once the images
and annotations were resized and adapted, eight generation functions were employed to create eight keys with which we
could approach slightly different labels depending on the nature of the captioning task. The first two keys are ‘Image
Name’ and ‘Joint Points,’ which provide image identification and the sixteen positional coordinates based on the body
parts visible in the image. Corresponding MPII indices and anatomical key points are listed in the table below for
reference.

0 1 2 3 4 5 6 7
R. Ankle R. Knee R. Hip L. Ankle L. Knee L. Hip Pelvis Thorax

8 9 10 11 12 13 14 15
Upper Neck R. Elbow R. Wrist Head R. Shoulder L. Shoulder L. Elbow L. Wrist

Table 2: MPII Joint Indices and associated body parts. (Right and Left are denoted as ’R.’ and ’L.’, respectively.)

The other six keys involve organizing and simplifying this positional information depending on the task at hand. ‘Text’
provides the target output, ‘Simple Text’ provides the target output for one joint, ‘Visibility text’ and ‘Simple Visibility
Text’ provide a binary output of whether the joint is visible in an image (if so, 1), or not visible (0). Their normalized
counterparts, ‘Normalized Text’ and ‘Normalized Simple Text,’ normalize the positional (x, y) pixel values to fall
between 0 and 1. For our experiments, the positional key formats we use are ‘Text,’ and to troubleshoot and debug,
‘Simple Text.’ We used all these formats for data to conduct some experiments before the official training process. We
ended up using un-normalized text with coordinates round to the closest integers for simplicity.
Once preprocessed, the images and annotations are saved via the Python Pickle module for straightforward recon-
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struction when needed. The processed data set and code to process it from the MPII Human Pose dataset for BLIP is
available in section 6 of this paper.

2.2 Model

The model we are fine-tuning is BLIP, Bootstrapping Language-Image Pre-training for Unified Vision-Language
Understanding and Generation [7]. As with models used for Pose Estimation tasks, this model’s input is an image and
the output is a caption containing the positional information of the body parts visible in the image [7]. BLIP is not a
Pose Estimation model but rather a VLP method. However, BLIP’s multi-modal Encoder-Decoder framework allows us
to leverage it to generate synthetic positional joint captions for each image. Once the model generates captions via
bootstrapping, it filters out noisy captions.

Figure 2: BLIP Architecture Diagram of architectures involved from the original paper [7].

BLIP uses a visual transformer (ViT) for image encoding, and it operates with a unified model to have both understanding
and generation abilities. As a result, the model can control each of the three functionalities. The unimodal encoder,
which encodes the image and text separately, with a text encoder similar to BERT’s [3]. The second functionality is
the image-grounded text encoder; this is taken care of by including a cross-attention layer in each transformer block
between the bi-directional self-attention layer and feed-forward network. Distinct from the first two functionalities, the
image-grounded text decoder edits the image-grounded text encoder by replacing the self-attention layers with causal
self-attention layers [7].
BLIP was pre-trained to optimize these three objectives jointly, so it has three losses that each activates one key
functionality [7].
Image-Text Contrastive Loss (ITC), which activates the separate image and text encoders (the unimodal encoder)
and aligns the ViT and text transformer feature space by assigning positive values to the image-text pairs with higher
similarity scores and negative values to pairs with low similarity scores. The ITC loss BLIP uses is defined as a sum
between cross-entropy losses and has a momentum encoder to account for cases where a high similarity pair ends up in
the negative space [7]. Mathematically:

LITC =
1

2
E(I,T )∼D

(
H(yi2t, pi2t) +H(yt2i, pt2i)

)
where H(·, ·) is the cross-entropy loss, y(·,·) refers to the ground-truth similarity, and p(·,·) is the normalized softmax
similarity between the image (i) and text (t), and vice versa [7, 19].
The Image-Text Matching Loss (ITM) is a binary classification task that activates the image-text encoder. It utilizes a
linear layer to predict whether an image-text pair is matched or unmatched depending on its multi-modal structure. The
formula for ITM loss looks like:

LITM = E(I,T )∼D

(
H(yitm, pitm)

)
[19]. The last loss function, Language Modeling Loss (LM), activates the decoder and is done by training the model

to autoregressively maximize the likelihood of the text. Through this, a cross-entropy loss is optimized [7, 19].
The BLIP model and relevant functions are imported from Hugging Face’s transformer Python library and Salesforce’s
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Python deep learning library for Language and Vision Research (LAVIS). The specific BLIP transformer class we
utilize is called BlipForConditionalGeneration.

2.3 Fine-tuning Procedure

Our choice of hyper-parameters to fine-tune with respect to included batch size, learning rate, and the optimizer choice
for gradient descent during model training. Due to the lack of literature on using BLIP for Pose Estimation and
consequently a lack of prior knowledge on a hyperparameter ‘baseline’ for fine-tuning BLIP for HPE, we used the
generic BLIP baselines.
We set our baseline choice of hyper-parameters to be a batch size of 4, a learning rate of 5× 10−5, and AdamW as the
default choice of the optimizer. While we could also potentially explore the choice of β1, the exponential decay rate for
the first-moment estimates, and β2, the exponential decay rate for the second-moment estimates, we opted to use the
default values of 0.9 for β1 and 0.999 for β2 to avoid divergence related problems during training time.

Hyperparameter Variable Name Choice of Values
Batch Size batch_size [1, 2, 4]

Learning Rate lr [5× 10−6, 2× 10−5, 5× 10−5]
Optimizer torch.optim SGD, Adam, AdamW

Table 3: Choice of Hyper-parameters

Table 3 above shows the choices of hyper-parameters that we experimented with. Ideally, we would have explored
all twenty-seven possible hyperparameter combinations. However, due to our constraints with computing power, we
experimented with nine choices sequentially. For each training loop, we trained our model on twenty-five epochs and
saved our model check-points at the 1st, 15th, and 23rd epoch. At the end of each epoch, we save the training loss,
validation accuracies, and average errors.

2.4 Evaluation

The primary evaluation metric we use is Mean Absolute Error (MAE). The MAE can be calculated by comparing the
positional captions generated by the fine-tuned BLIP model with the positional annotations provided by the MPII
dataset. More specifically, it is calculated as the average per joint offset from the ground truth.
Apart from that, we also measure the ability of the model to perform the Pose Estimation task with
Pose Estimation Accuracy, which is defined to be the number of correctly estimated samples divided by the
total number of samples. We define a correctly estimated sample as one whose predicted joint positions are close
enough to the ground truth. We evaluate the accuracy with three different thresholds: 25 pixels, 5 pixels, and 1 pixel.
These specify the maximum distance between the predicted points and the ground truth in terms of the number of pixels.

3 Results

Before training the model on our final goal, generating a positional caption for the sixteen anatomical key points, we
carried out an initial experiment. We verify that the model has the potential to learn the positional information of the
key points in the image. To check this, we randomly select several images and use the ‘simple text’ key to overfit the
model. A demonstration of this simple task is provided in section 6. From this experiment, we assess that the model can
make predictions that match the ground truth.

3.1 Simple Task (Baseline): Training for a Single Body Joint

After verifying that the model can learn what we are interested in, we scale up the size of the input dataset from five to a
thousand. From this, we can confirm that the model has the ability to learn from a larger data set.
As mentioned in the Methodology section 2, the input to the model is a preprocessed image and the desired output is
the pixel coordinate corresponding to a single body joint (e.g. neck: (100, 200)).
The model was trained using the AdamW optimizer with a learning rate of 5× 10−5 and a batch size of four. The model
was trained for a hundred and thirty epochs, with each epoch taking approximately three minutes to run. The accuracy
metric is calculated every five epochs for the validation set and ten epochs for the training set. Figure 3 displays the loss
and the accuracy change for training and validation:
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Figure 3: Comparing the loss (left) and accuracy (right) plots under the ‘simple text’ scheme, for both training and
validation.

In the plot on the left for Figure 3, we see that the training loss generally decreases during the training process. However,
we notice that there is a spike in the loss curve around the twenty-thousandth iteration. We attribute this to a divergence
that occurs during training, and so after resetting the model to its nearest checkpoint, the loss continues to decrease.
One interesting observation from the other plot on the right in Figure 3 is that the training accuracy increases drastically
around the 70th epoch and finally goes above 90% by the final epochs. However, the accuracy for validation does not
perform well and the changes are slower, with the final accuracy around 15% hence indicating a pattern of overfitting.

3.2 Complex Task: Training for all 16 Key Points

The previous warm-up and baseline section serves as the preparation for our main target - training for all key points of
the body joints in one image.
As mentioned in the fine-tuning section, we select three sets of hyperparameters: learning rate, batch size, and optimizer,
to carry out fine-tuning. By comparing the training loss and validation accuracy, we train our final best model based on
the set of parameters with the best performance after twenty-five epochs.
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Figure 4: Comparing the training loss (left), validation accuracy (middle), and validation MAE (right) plots with
different learning rates, but with AdamW and batch size 4.

As is shown in the plots, the magnitude of the learning rate plays a vital role in training the model. We adopt 2× 10−5

to be the learning rate for our final model since it provides the best performance for both accuracy and MAE. In terms
of batch size, different batch sizes do not show drastic changes in the evaluation metrics. Considering the speed of
training, we adopt batch size to be 4.
For the choice of optimizer, we adopt AdamW, even though Adam’s performance looks better with a learning rate of
5× 10−5. The combination of AdamW, a learning rate of 2× 10−5, and a batch size of four can provide the best results.
Using the fine-tuned BLIP, we evaluate the positional captions during the early, middle, and late stages of training in
Figure 7.
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Figure 5: Comparing the training loss (left), validation accuracy (middle), and validation MAE (right) plots with
different batch sizes, but with AdamW and a learning rate of 5× 10−5.
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Figure 6: Comparing the training loss (left), validation accuracy (middle), and validation MAE (right) plots with two
optimizers. SGD does not converge.

Figure 7: Caption outputs overlaid on corresponding training images during the early, middle, and late stages of training.

Based on the validation test results in Figure 10 we get after fine-tuning, we conclude that the pre-trained BLIP image
captioning model can indeed do pose estimation tasks.
The ‘best’ model was validated with about 300 images randomly drawn from the pre-processed MPII dataset. The
validation accuracy of the model is at about 92% with an MAE threshold of 25 pixels and an average estimated key
point error of 5 pixels. Given such a low average error, we explored the precision of the model further by finding the
accuracy at lower thresholds. Evaluating the model with a lower accuracy threshold of 1 pixel, which is the smallest
offset possible in our setting, the accuracy is around 81%.
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Validation Result with Different Threshold
Threshold Total Correct Accuracy
25 293 271 0.925
5 293 239 0.816
1 293 237 0.809

Table 4: Validation results and accuracy at each threshold level.

4 Discussion

4.1 Why this works?

One phenomenon that arises is the simple task’s inability to generate accurate captions, while the complex version of
the task attains great performance both in training and validation data sets. Although this result seems counter-intuitive,
there seems to be a subtle reason behind this related to the self-attention mechanisms in the model.
The difference between the simple baseline task and the complex task is that the complex task generates a positional
caption for all sixteen anatomical key points simultaneously, whereas the simple baseline task generates a caption for
only one. We think that when the model is trained over a set of spatially related key points, the spatial restrictions
between different joints/body parts in the human body are learned as well. This helps the model infer the coordinates
using both the image embeddings and the positions of the previously generated points. Specifically, knowing the
position of the right knee, left knee, and left ankle of a person in the image restricts the potential positions where a
person’s right ankle can be. Similarly, by knowing the position of the shoulders, the model verifies the positions of the
other body joints. In order to verify our intuition about why this could work, we conducted a few experiments. Our
exploration of this relationship is demonstrated through Figure 8, where we mask different parts of a person’s body and
analyze how it localizes the key points.

Figure 8: Example of how the Self-Attention mechanism behaves under localizing for human anatomical key points.

We see in Figure 8 that when we mask out the person’s lower body, the accuracy of the positional caption worsens.
Specifically, if we mask out joints number one to four, the model does even worse compared to cases where other joints
are occluded. We hypothesize that this phenomenon occurs due to the self-attention layers in the image-grounded text
decoder. As the joint positions are generated in sequential order, the model takes previously generated positions into
account when it is creating the next one (the order of the joints/key points is in Table 2). This mechanism provides the
model with the ability to learn the positional relationships and the spatial restrictions between joints. As a result, the
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mechanism provides the model some flexibility in the presence of occlusions, allowing it to achieve good performance
even with them.
However, we note from Figure 8 that the ‘flexibility’ is conditioned on which joint points are being masked and where
they are in the sequence. If we mask out the body parts associated with the first few joints during the generation process,
the model doesn’t have correct points to reference, resulting in mistakes during the next generation. In the last image
in the first row of Figure 8, we see that the model incorrectly infers the spatial relationship for the upper body when
substantial parts of the body key points in the positional sequence are occluded. On the other hand, the model generates
relatively accurate captions even under the occlusion in the two images in the second column of Figure 8. We observe
that the correctness of the first four points (MPII joint indices 0-4) generated in the caption seems to greatly affect the
whole inference because blocking these points leads to bad estimations. It seems that as long as the model has some
correct and relevant baseline points to reference, it is tolerant of occlusions within the image.
We further investigate how the self-attention mechanism may help with generating correct key points by plotting the
attention map after the softmax layer of the text decoder, which is shown in Figure 9. These attention maps are taken
from the eighth of 12 heads in the text decoder. The y-axis represents the generated tokens. The labeled rows correspond
to the tokens that are converted to coordinates, whereas the unlabeled rows are descriptive words and punctuation. The
brighter a row is, the more weight its associated token has. We see that, when predicting the position of the left ankle
(lankl), the most activated rows are the left knee (lknee) and right ankle (rankl). We can observe that when predicting
the coordinates of a joint, the model will attend to the coordinates of previously generated joints. It also seems to weigh
each previously generated joint by how much they are spatially related to the joint that is about to be generated because
when predicting the position of the left wrist, the most activated row is the left elbow (lelb). We think this also explains
why the model does bad at predicting one joint and does well at predicting all sixteen joints. With sixteen joints, the
model can always refer back to previously generated points, whereas with only one point, it can only utilize the visual
information for prediction.
In short, based on our observations of the model’s behavior and our experiments, we believe the attention mechanism
plays a crucial role in doing an accurate and occlusion-resistant pose estimation.

Figure 9: The self-attention map of attention-head 8 of the text decoder.

9



Fine-tuning Vision Transformer-Based Model for Pose-Estimation A PREPRINT

4.2 Robustness

Figure 10: Sample outputs from the fine-tuned BLIP model lined up with the model input and ground truth images.

Generally, it seems that the model performed well during training and validation but poorly during test time. Even the
best-generated captions would still have some key points far away from the positions of the actual body parts seen in
Figure 10. However, this behavior is not all that surprising when taking into account which images we retained during
training/validation dataset preprocessing. We believe that this discrepancy arose since we did not train our model with a
sufficiently large dataset.
Based on our observations, the average errors seem to be dominated by the poorly estimated samples from the validation
set. That is to say, if the model recognizes a pose, it will output the joint coordinates with almost 100% accuracy. If it
cannot recognize a pose, then it will produce a result that deviates significantly from the ground truth.
Apart from validating the model with data drawn from the MPII dataset, we also tried to test model robustness by
feeding it some images from the internet, i.e., out of distribution. The results from testing the fine-tuned model on
images outside of the training/validation dataset can be seen in Figure 11.
As mentioned earlier in the paper, the original MPII data set contains more than twenty-five thousand images. After
pre-processing the data to yield a training/validation set where only one person appears in each image with all body
joints visible, we naturally limit the poses the model ‘sees’. Also, the MPII dataset typically contains images of people
in similar poses and similar environments. Hence, we can think of the training data and validation data to be coming
from the same distribution. The good validation performance in these experiments tells us that the model can generalize
well within the distribution defined by the subset of the MPII dataset. However, since this distribution only covers a
limited number of possible human poses, the model doesn’t perform as well on the out-of-distribution test data.
During training, we used about 1100 images with annotated key points from the MPII dataset, which is not a lot of data
for these types of tasks. Hence, we cannot expect the model to generalize well on random images from the internet
due to the model’s lack of inductive bias. This seems to be one of the key limitations of a fine-tuned BLIP for Pose
Estimation. To improve the robustness of the model, we will need to train the model on tens of thousands of images,
including those with possible occlusions and missing labels, so that the model can learn a greater variety of human poses.
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Figure 11: Results from testing fine-tuned BLIP on images from the internet (out of training/validation dataset).

4.3 Future Work

As mentioned earlier, to increase the model performance, one thing that can be done is to train the model on more
data given enough computational resources. We would like to not only increase the size of the training and validation
dataset and introduce a greater variety of poses but also test the model on more out-of-distribution images. The other
experiment we can do further is to conduct a more detailed analysis of the model’s architectures, including all the
attention layers, weights, and gradients, to better understand how the attention mechanism helps with pose estimation.
Although we observe how the model attends to previously generated joints when predicting new joints, more in-depth
analysis is still needed to reach that conclusion.

5 Conclusion

In this project, we fine-tune BLIP, a multi-modal vision-language model in the context of a Pose Estimation. Starting
from simple processed data, we first verified that the model can do pose estimation by training on a small data set and
training it to generate a positional caption for one human anatomical key point. After recognizing that it can learn, we
increased the training data set, and while the model performed well during training, it encountered overfitting. Finally,
we trained and fine-tuned the model on a larger data set and with a more complex task, generating a caption for all
sixteen key points. As a whole, the fine-tuned BLIP displays a good performance with respect to Pose Estimation
when trained on a subset of the MPII dataset. Additionally, we revealed a strong connection between self-attention and
generating positional captions for all sixteen human anatomical key points. This connection allows us to study how a
well-placed attention mechanism can potentially allow the model to tolerate occlusions.
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6 Data and Code Availability

Code to reproduce our experiments and plots can be found here: https://github.com/RichZhou1999/cs282_
final_project_codebase/tree/main.
The link for the demo notebook can be found here: Demo on simple text.
Notice that all the notebooks are intended to be run on Kaggle. Running them in Colab or locally may cause unexpected
errors.
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7 Response to Reviews

As suggested by our reviewers, we did not provide a very detailed explanation of the BLIP model’s attention mechanism
along with some evidence that can help support our thoughts about how the attention mechanism makes the model
perform better. Hence, in this version, we add an attention map showing the weights used to generate joint coordinates.
This plot clearly shows that the model is attending to previously generated joint positions, with more attention on the
most relevant body parts. We also provide more explanation on what we can learn from the plot to help explain why we
think the attention mechanism makes the model perform well on pose estimation tasks.
Suggestions regarding the organization and clarity of certain sections in the paper were also acted upon. Due to the
length of the ’Related Work’ discussion in the paper, one reviewer suggested that we create a separate subsection for it,
and we did. An additional formatting-related comment that we addressed was the centering Table 4.
With respect to the content, one reviewer suggested providing more motivation as to why we are exploring BLIP for
pose estimation. Hence, we’ve built upon the ’Related Work’ and ’Study Objectives’ sections to provide a more clear
narrative. Apart from a brief compare and contrast between Vision Transformers and CNN-based methods, we added a
paragraph in the ’Study Objectives’ subsection to discuss our motivations more explicitly. A reviewer also mentioned a
lack of clarity in portions of the Discussion section, and so those were edited and improved upon.
We also highlighted certain aspects of our studies - reviewers mentioned testing robustness via masking and testing on
images from the internet. While we had done this for the first draft, we had not discussed the Figures that demonstrated
them. Hence, we discuss Figures 8, 10, and 11 further in the Discussion portion.

Limited by the submission time, we are not able to address all the suggestions pointed out by the review-
ers.
The comparison between CNN based model and our model is a meaningful issue to talk about. However, a systematic
analysis can not be performed in a short time. There are a bunch of CNN models. Selecting one model arbitrarily and
testing on some arbitrary data is not meaningful, since it is hard to determine whether the difference is caused by the
data or the model’s performance. We have some ideas to address this issue, but we would need several baseline data
sets and then test our model along with other CNN-based models. Since this is too heavy for a two-day revision, we
would like to solve this issue in the future. Also, since the BLIP model is not pre-trained for doing vision classification
tasks like pose estimation, we are quite certain that it will not outperform the traditional CNN-based pose-estimation
models, especially when we have a limited amount of data and computational resources. Therefore, we think it will not
be very meaningful to compare our model with other robust pose-estimation models.
Although an ablation study would allow us to better explore BLIP, significant experimentation would take over two
days to perform. The vision encoder and the text decoder each have 12 attention layers with 12 heads. Conducting an
ablation study on them would take much time. Also, we did try to study the layers by plotting the cross-attention.
However, we cannot find any patterns from it, which makes it a bit hard to interpret why a part of the ViT network
attention layers is contributing more to the final results.
Due to the nature of the Pose Estimation positional captions, we utilize standard generative caption metrics like SPICE,
and CIDEr have less meaning. Thus, we continue to work with mean absolute error and Pose Estimation Accuracy
primarily.
One last suggestion that was made was to attempt fine-tuning the model with some of the Parameter Efficient
Fine-Tuning techniques mentioned in class, however, we utilized a traditional hyperparameter tuning method due to
precedent. The literature we referenced and ’related work’ did not use PEFT methods. Since there is no literature on
BLIP being used for Pose Estimation/Action Recognition tasks, we wanted to stick with certain methodologies that
have worked in the Pose Estimation domain.
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