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Objective: Understand the fundamentals of singular values via Prof. Shewchuk’s lecture videos
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[The (high-dimensional) MNIST digits projected to 2D (from 784D). Two

dimensions aren’t enough to fully separate the digits, but observe that the digits 0 (red) and
1 (orange) are well on their way to being separated.]
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Eigenfaces
Mo w s o dgemvedkst Vi of NOX,
Ie) B N o X contains n images of faces, d pixels each.
| { ) A\ be = 04 2
{row Ahe ‘\“q\“ (n Owdsemk o i * [If we have a 200 x 200 image of a face, we represent it as a vector of length 40,000, the same way we
represent the MNIST digit data.]
Face recognition: Giv y face, compare it to all training faces; find nearest neighbor in R%.
‘\\/\J X7 % A . - B _ [This works best if y ve several training photos of each person you want to recognize, with di
_,_/—‘ =v W' 7w Py WTwW e lighting and different facial expressions.]
\WTW \ —_— — - 4 Problem: Each query takes ©(nd) time.
N %Y wWTw Solution:  Run PCA on faces. Reduce to much smaller dimension d’.
Now nearest neighbors takes O(nd’) time.
Y [Possibly even less. We'll talk about speeding up nearest-neighbor search at the end of the
) R ek V) achiovs e o \J esacun AL Irv semester. If the dimension is small enough, you can sometimes do better than linear time.]
¢ J e femvect ) : e -
°0 o 0 e V) e B B ekt Qg Ve [If you have 500 stored faces with 40,000 pixels each, and you reduce them to 40 principal components,
= then each query face requires you to read 20,000 stored principal coordinates instead of 20 million pixels.]
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cigenfaceproject.pdf | [Images of a face (left) projected onto the first 4 and 50 eigenvectors, with
the average face added back. These last image is blurry but good enough for face recognition.]

For best results, equalize the intensity distributions first.
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Face Greyscale Equalized
[Image equalization.]

[Eigenfaces are not perf encode both face shape and lighting. Ideally, we would have some
. to factor out lighting and analyze face shape only, but that’s harder. Some people say that the first 3
mint eigenfaces are usually all about lighting, and you sometimes get better facial recognition by dropping the
first 3 eigenfaces.]

[Optional: Show Blanz-Vetter face morphing video (morphmod.mpg).]
[Blanz and Vetter use PCA in a more sophisticated way for 3D face modeling. They take 3D scans of
sort of least-squares linear regression, with one subtle but important change._In- ’s faces and find correspondences between peoples’ faces and an idealized model. For instance, they
fixed v directio re measuring the in a direction orthogon: i our nose, the corners of your mouth, and other facial features, which is something the
original eigenface work did not do. Instead of feeding an array of pixels into PCA, they feed the 3D locations

f various points on your face into PCA. This works more reliably.]
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ular value decomposition for Math 54

Recall that if A is a symmetric n x n matrix, then A has real eigenvalues
Al An (possibly repeated), and R” has an orthonormal basis vi...., v,
where each vector v; is an cigenvector of A with eigenvalue ;. Then

\=PDP!

where P is the matrix whose columns are v, ..., v,
matrix whose diagonal entries are An. Since the vectors
y p

orthonormal, the matrix P is orthogonal, i.c 1, 50 we can alternately

write the above equation as
PDP! v

A singular value decomposition (SVD) i ieralization of this where

Ais an m x n matrix which does not have to be symmetric or even square

1 Singular values

Let A be an m x n matrix. Before explaining what a singular value decom
0 1 is, we first need to define the singular values of A
Consider the matri umetric n x n matrix, o its

eigenvalues are real.
Lemma 1
Proof. Let x be an eigenvector of ATA w
A)" Az = 2" AT Ax A v x|

Since [|Az]? > 0, it follows from the above equation that Allz|2 > 0. Since
r|[2 > 0 (as our convention is that eigenvectors are nonzero), we deduce
that A > 0.

et An denote the cigenvalues of AT A, with repetitions. Order

these so that Ay ). VA, so that o1 > 02

Definition 1 2 4 > 0 defined above
called the singul

oposition 1.3. The r o values of A ¢
of A

Proof. The rank of any square matrix equals the number of nonzero cigen-

lues (with repetitions), so the number of nonzero singular values of A
equals the rank of AT y ious home k problem, ATA and A
have the same kernel. It then follows from the “rank-nullity” theorem that
AT A and A have the same rank

Remark 1.4. In particular, if A is an m x n matrix with m < n, then A
has at most m nonzero singular values, because rank

The singular values of A have the followi
Proposition 1.5. Let A be

Az||, where = rar

o1, and th
1, and

Proof. Let vy e an orthonormal basis for R" consisting of cig

tors of AT A with eigenvalues o?. If z € R”, then we can expand  in this

a unit vector, |[z]|2 = 1, which (since the
mal) means that

ince v; is an cigenvalue of A
AT Az = c10%v, +

Taking the dot prodoct with (2), and using the fact that the vectors vy
are orthonormal, w

Since oy is the largest singular valuc

Equality holds when ¢; = 1 and ¢z €n = 0. Thus the maximum

lue of || Az||? for a unit vector  is hich is achieved when x = v;

One can similarly show that o is the maximum of [|Az|| where z ré
over unit vectors that are orthogonal to v; (exercise). Likewise, o3 is the
maximum of here z ranges over unit vectors that are orthogonal to
v1 and v,; and so forth.

Proof. We compute

1, this caleulation tells us that [|Av o?

j, then since v; - v; = 0, this calculation shows that

A has a (not unique)

re U and V are as follows

Proof. We just have to check that if U and V' are defined as above, then
A=USVT Ifx then the components of V7 are the dot products

of the rows of V7 with z, so

When we multiply on the left by U, we get the sum of the columns of {
weighted by the components of the above vector, so that

r)oy A
1A

Step 3. We now find the matrix U. The first column of U is
1 (18 3/V10\
am (s) = (i)
The second column of U is
1 (3 1/V10
v o) = (s)vin)
natrix, we do not need any more columns. (If A had only

ular value, then we would need to add another column to
to make it an orthogonal matrix.) Thus

3/VI0 1//10
1/V10 -3/V10

To conclude, we have found the singular value decomposition

I VI (VT 0
(i Ssivi) o svo

cations

Singular values and singular value decompositions are important in analyz-
ng data

One simple example of this is “rank estimation”. Suppose that we h
n data points v v, all of which live in R™, where n is much lar
than m. Let A be the m x n matrix with columns v v Suppose the
data points satisfy some linear relations, so that vy,...,v, all lic in an r-
dimensional subspace of R™. Then we would expect the matrix A to have
rank r. He er if the data points are obtained from measurements with
errors, then the matrix A will probably have full rank m. But only 7 of the
singular values of A will be large, and the other singular values will be close
to zero. Thus one can compute an “approximate rank” of A by counting
the number of si ar values which are much larger than the others, and
one expects the measured matrix A to be close to a matrix A’ such that the
rank of A’ is the “approximate rank” of A

For example, consider the matrix

2 Definition of singular value decomposition

Let A be an m x n matrix with singular values o, >, 20
et 7 denote the number of nonzero singular values of A, or equivalently the
rank of A

Definition 2.1. A singular value decomposition of A is a factorization

where
U is an m x m orthogonal matrix
o Vis an n x n orthogonal matrix.

an m matrix whose i diagonal entry equals the
e 0; for i = 1,...,r. All other entries of £ are zero.

If m = n and A is symmetric, let r, ..., Ay be the eigenval-
ues of A, ordered so that [\ > [Ae| > [Aul- The singular values of A
reise). Let vy be orthonormal cigenvectors
We can then take V to be the matrix whose columns
s is the matrix P in equation (1).) The matrix ¥ is
(This is almost the
the matrix D in equation (1), except for the ¢ value signs.)
Then U must be the matrix whose colum where the sig

0, and 0. (This is almost the

have changed the signs of some of the columns.)

onal entries |\ |

3 How to find a SVD

Let A be an m x n matrix with singular values o > 0 W20
let r denote the number of nonzero singular values. We now explain h
find a SVD of A

Let vy, v, be an orthonormal basis ¢ where v
of AT A with eigenvalue o?

Lemma 3.1. (a) [ A

(b) If i # j then Av

Since Au i > r by Lemma 3.1(a), we can rewrite the above as

USVTz = (v - 2) Ay
AvoTz +
A(vro]
Az

In the last line, we have used the fact that if {v; s an orthonormal

basis for R", then vy + I (exercise),

| ple (from Lay’s book) Find a sing

()

Step 1. We first need to find the eigenvalues of A7

(B )

We know that at least one of the eigenvalues is 0, because this matrix can

A. We compute that

have rank at most 2. In fact, we can compute that the cigenvalues arc
At = 360, A = 90, and A Thus the singular values of A are o
V360 = 6v/10. v 03 = 0. The matrix ¥ in a singular

3 matrix, o it must be

Step 2. To find a matrix V' that we can use, we need to solve for an

orthonormal basis of eigenvectors of A7 A. One possibility is

) () -G

(There are seven other possibilities in which some of the above vectors are
multiplied by ~1.) Then V is the matrix with vy, va, vy as columns, that is

The matrix A’ has rank 2, because all of its columns are points in the
subspace 2 +z 0 (but the columns do not all lie in a 1-dimensional
subspace) suppose we perturb A’ to the matrix

101 201 -2 299

101 001 101 202

301 ~199 1 198

This matrix now has rank 3. But the eigenvalues of AT A arc

0% ~58.604, o3 ~19.3973, o3 ~0.00029, of

Since two of the singular values are much larger than the others, this suggests
that A is close to a rank 2 matrix.
For more discussion of how SVD is used to analyze data, see e.g. Lay

book
me from Lay’s book)

(a) Find a singular value decomposition of the mat

(b) Find a unit vector z for which || Az]| is maximized
Find a singular value decomposition of A .

a) Show that if A is an n x n symmetric matrix, then the singular
values of A are the absolute values of the alues of A

(b) Give an example to show that if A is 2 matrix which is
not symmetric, then the singular values of A might not equal the
absolute values of the eigenvalues of A

Let A be an m x n matrix a s 2 o0 > 0.
Let v; be an eigenvectc ! te o7, Show that o
the maximum f | Az]| w over unit vectors in R

that are orthogonal to
Show that if {v; is an orthonormal basis for R", then

=1

Let A be an m x n matrix, and let P be an orth m % m matrix
Show that PA has the same si
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