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Objective: Understand the fundamentals of singular values via Prof. Shewchuk’s lecture videos  
 




 


















































































































































































Leanne20 unsupervised
LearningPrincipalcomponentAnalysisPea

Derivationsas maximum vineinoodestimationmaximizingthevarianceandminimizingthesumof let's startwithassumingthat wehavefound oneofthedirectionsthat

m

dohsquared projections eigeneansforfacerecognition wethink is important one ofthe directionsthatcaptures alotgunsupervised learning thevariance inonedataset we'llcurethisdirection aprinciplecomponent
or aprincipledirection s letscall it wwehave samplepoints but nolabels ie wedon'thaveanycranes or yvalvesagainstwhichwecanagreestoattainpredictions so assume w is aunit vector

TheGoalofunsupervisedleaningthoughistodiscoverstructure now the orthogonalprojection ofsome samplepointi thedate x onto rector w is I xW insomeexamples gunsupervisedleaning x
clustering partitiondataintogroupsofsimilarnearby
dimensionalityreduction datoftenliesneararow so x.wsw isbasicallythedistancefromtheorigintodimensional subspacecor theorthogonalprojectiong apointx ontothe directionwmanifold isfeaturespace

Densityestimation
Matriceshavedowdank

af w is not aunitvectorthen I ftp.t

y

man
Goaistofitacautiousprobabilitydistributionto andsodiscretedatecomeis an archetypal exampleof theidea hereisthat we aregoing topickthebest

direction w
Densityestimationbutmorecomplexdensityestimation thenproject onthedatedown ont w sothat

wecananalyze
problemsalsoexist Ejustoneinformationwhen we are projecting downfrom

g my

PRINCIPAL COMPONENT ANALYSIS PCA so supposewepickseven directionsthose
directionsspana subspace

and wewant toprojectpoints orthogonallyontthe
subspaceThis

iseasyifthedirectionsare orthogonal to
eachother

Goal Givensamplepoints aRdfindkdirectionsin our d
dimensionsthatcapturemostoftheinformation An exampletounderstandtheformulavariance variations betweenthedifferentpoints

suppose line in in 20is givenbythevector in E and
wehave apoint x Y and we are askedtofind

mymy

Graphically drawingthis

s
basically wecansaythat si canit shesawjacernow n ni atwhichwouldbeorthogonalaxpointsare w

orthogonaltothis saunaisa I so nans w oplaneuponwhich accordingtomesumn I it I awaww
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cw Eininformationthannecessary after dimensionalityreduction

Anexampleofhigherdimensioneductionto a 20dimensional
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orthonormalgg

im i W E tries coordinates intorthogand t somespecialeachotherand coordinatesystem
thatlivesinside

spaceyse

ne rn
obliqueview v e IR Y

a
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oftenwejustwant the kprinciple
coordinates zfyyp.gg

a u inprinciple component space eigenvectors and
don'tactuallywanttheprojectedpointin a

maybewoulddoclassificationwellifwereduced dimensions t donedimensional spaceRd
now howdowegetthese principal

componentsi.e
Butwhydoweneedtodothis thedirectionsthatdefineoursubspace

Reducing ofdimensionsmakessomecomputation Eeget themgrantee matrix XXcheaperes aegenian soosooosoregieninonewinansotimesfaster
DsquarematrixIggy

Remove irrelevant dimensionsto reduce overfilling
inlearning algorithms fenceparameterstofit renovating a symmetricmatrix
thoughyouwantbeleftwithfeaturesperserather 3 positivesemilinencombinationsofthosefeatures definite
overymuchlikesubsetselectionhomethefeaturesthat

1X

many pagan
wewekeepingvenusthefeatures wearethrowingaway whyis xtx a positivesemidefinitematrix

Finda'imanitas ji epimientnghtalations i complexthings GoingbacktoHw2
erfacesgenesetc
Justforthesakeof

visualisation Pcaping
spropertiesyess
aneigenvaluesaregreaterLet Xbe nxd designmatrixAND centrethematrix manandtwo
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solution Lee tobe an eigenvalueyawithcorresponding eigenvector v then

a toprovech ut are true anvil center X
Frompartcarweknowthatand na th optional normalise X if units ofmeasuremeare differentatan o so atoneso

so examso

yaarenonnegative
Yhence x o is an eigenvalues son ofdifferent

featuresreallymatters
using btoprove

considertheeigendecomposition ofA in compute unit eigenvectors
and corresponding eigenmatrixwithentriesendtoeigenvalues valves y XX

understandingthisruinsa choose k options based on eigenvalue size
anarapyuanscant

If U A Is weaning summit arisen
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pickeigenvectors
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compute the kprinciple
coordinate n ri of

each training test point
when we dothis

spametanango.gsggimmetra gtixnominee money
projection we have achoice we canprojectthe
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we compare canwww unseen
the canned trainingdate
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then riv I caesarean
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we have to translate
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vector
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way a
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applicationspecific

using icetoproveCal onchoosing h peapie
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savagesymyetrigomatrix
Ais PSDsince

it satisfies the following 3 conditionsie

Dall A's are nonnegative
3 ThereexistsamatrixUsuchthat A ou

so

PCA Derivation 2 Find directionw that maximizesthe
Xix is a snare symmetric positive

semidefiniteoxomatrix
sample variance ofprojected

oh

data
Let Oct sa e tobeits eigenvalues ascending

sorted

Let vi u ro becorresponding orthogonalunit
vectors

eigenvectors

and themostimpprinciplecomponents
eigenvectorsarethe

snowingthis in 3different motivating
derivations

PaaDerivationit Fit a Gaussiantodatewith
maximumlikelihood

estimation

choose r amnionaxesofgreatest
variance

Find thatmaximizes VasCEtuIa In Xi ftp.t.I
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whenyou
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so how tomaximisethisvariance
I
Find wthat maximizes InTwin

St w is an eigenvector Vi of xx
thenthe Rayleigh Onowent willbe Ti

man

MEET EE T.imu ti

of all eigenvector v achieves maximumvariance ton

whatif w isnotrestricted tobean
eigenvector noother

vectorcanbeat Va incapturing themaximumvariance
notadifficultproof on Rayleigh ometrentpageon

Wikipedia

so eigenvector associated withthelargesteigenvaluegivesyou pm
aprinciplecomponent that givesyouthe

maximumvariancehowever

wetypicallywant 6
directions afterwe'vepicked one
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direction ro wewanttopick a

second directionthat
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direction Butsubject to sometimes LyftEditor
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direction thatmaximizes openaligning

mommasame
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PcaDerivation 3 Finddirection w that minimizesthe
meansquadprojectiondistance
sumofsquaresy editofeachpointonto aprojectionaxis

apnnaperaparent
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components

minimizing sumof squaresrededges

Lecture 21 SingularValueDecomposition

An alternative way of computing
eigenvectors eigenvalues

so
previously Computing eigen

decomposition y Xtx
takes 0 nd time

xx is poorly
conditioned numerically

inaccurate
eigenvectors

Exitin pi

Eminem
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expandingeastgetr.ms

figangfiyay we're going to compute a singlevalue
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d

fitwaitfiaan decompositionof X and we're goingto
getthesame vectors and indirectlyxix qq.xit.w xw.wtxitqw.ggw thesamevalues
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xxiiiyay
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verymatrix has an sup whether it is

symmetric or not square ornot

X Ubut
If n 3d it hastheform
x ut o

I giii t
special
diagonal

orthonormal
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someofthe singularvalues canbezero
numberofsingularvalues isquestonlymatrixX
Et Ui is an eigenvector y Xtx

sobyfindingtheeightsingularvaluesgXwehavefound eigenvectors

y xx
I
x
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eigenfecyposition

Fact we can find the
kgreatestsingularvalues
I the corresponding aight
singularvectors in 0 nok time

Important Row zaf UDgives
theprincipal

coordinates ofsamplepoint Xi
in kdim

space
i e
samplepoint Xi i e iti tj XiVjS.io
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https://inst.eecs.berkeley.edu/~ee16b/fa19/notes/note13.pdf


